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Abstract. Low-cost sensors for particulate matter (PM) monitoring have gained popularity due to their affordability, compact

size, and low power requirements. These sensors typically offer the capability to collect data at sampling rates that can be

adjusted according to the application. However, the effect of varying the sampling frequency on sensor performance has not

been thoroughly examined. This study explores how variations in sampling frequency influence the performance of low-cost

PM sensors and identifies some possible use cases for different sampling rates. During this study conducted over a one month5

period, data from five SPS30 sensors was collected at 15 second intervals and then aggregated into 5, 10, 15, 30, and 60

minutes intervals. During the study, hourly PM2.5 levels ranged from 117 µg/m3 to 303.3 µg/m3, with significant diurnal

variations, influenced by temperature and humidity. It was found that changes in sampling frequency had minimal impact

on sensor performance, as evidenced by comparable linearity and error metrics across different sampling intervals. However,

the study also revealed that short-lived plume events could be missed at lower sampling frequencies. This suggests that for10

monitoring gradual changes in PM2.5 levels, higher sampling frequencies do not necessarily improve measurement accuracy,

but are crucial for capturing transient events. This study underscores the importance of optimizing sampling frequency based

on specific monitoring objectives and the need to balance power consumption with data resolution, particularly in remote or

battery-based deployments.

1 Introduction15

Low-cost sensors (LCS) for particulate matter (PM) monitoring have generated significant attention within the scientific com-

munity due to their affordability and performance (Liu et al., 2020; Giordano et al., 2021). Their compact design makes them

well-suited for portable applications, while their affordability allows for widespread deployment, facilitating the establishment

of spatio-temporal networks for high resolution pollution data (Jiao et al., 2016; Zheng et al., 2019; Yi et al., 2015). More-

over, their low power consumption makes them suitable for standalone use, including scenarios where battery or solar power20

can be utilized (Lung et al., 2020; Das et al., 2022; Gulia et al., 2020; McKercher et al., 2017). These sensors serve diverse

purposes, ranging from personal exposure monitoring (Helbig et al., 2021; Xi et al., 2022) to the creation of extensive data

collection networks for ambient air pollution monitoring (Jain et al., 2021; Koehler and Peters, 2015). Additionally, the United
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States Environmental Protection Agency’s (USEPA) acceptance of LCS for non-regulatory applications further underscores

their utility (Duvall et al., 2021; Malings, 2024).25

LCS have the capability to generate data at high frequency (∼ 1 sample/s) (Sensirion, 2024; Plantower, 2024; Honey-

well, 2024), and are typically calibrated against optical particle counters (OPC) using known particles such as monodisperse

polystyrene latex (PSL) beads for lab testing (Kaur and Kelly, 2023). The calibration involves averaging the high-frequency

LCS data to match the sampling frequency of reference monitors, followed by assessment against the USEPA-recommended

metrics (Duvall et al., 2021).30

While it is widely assumed that higher frequency LCS data collection aligns more closely with the results obtained from

reference sensors, configuring LCS to operate at high sampling rates leads to increased power consumption. This issue is

particularly critical in remote deployments where a direct power supply may not be available and it can rapidly drain battery

reserves. Conversely, lowering the sampling frequency may lead to the loss of critical information and a weaker correlation

with reference monitors. Despite the widespread deployment of LCS, there remains a significant gap in research regarding the35

optimal sampling frequency for accurate data collection. This lack of understanding makes it difficult to recommend a sampling

rate that balances the need to achieve performance close to that of the reference monitor with the specific requirements of the

application.

In the context of short-term exposure measurement, accurately capturing brief, high-intensity plume events such as diesel

generator emissions (Fadel et al., 2022; Greim, 2019; Gilmore et al., 2006), vehicular emissions (Zhang and Batterman, 2013;40

Lipfert and Wyzga, 2008), cooking (Chu et al., 2021; Xiang et al., 2021; Sharma and Jain, 2019; Balakrishnan et al., 2004),

or waste burning (Wiedinmyer et al., 2014; Kumari et al., 2019) is very important. These transient spikes in PM2.5 levels can

have a significant impact on daily air quality and are linked to adverse health effects, including airway inflammation and other

complications (Salvi et al., 1999; Gong et al., 2003; Pope and Dockery, 2006). Although both short- and long-term exposures

are associated with health risks, the methods to monitor them are different. Long-term exposure can often be monitored with45

lower frequency sampling, which is adequate to detect general pollution trends. However, accurately assessing short-term

exposure requires high-frequency data to capture the plume events. In personal exposure monitoring, it is important to evaluate

both the exposure level and the corresponding dose (Borghi et al., 2020, 2021). Low sampling frequencies may suffice for

broad exposure assessments, but high-frequency data is necessary to accurately measure the dose. This highlights the need to

optimize sampling strategies based on specific monitoring objectives, such as assessing overall exposure or capturing the dose50

during short-lived events.

This study, conducted over a period of one month, uses Sensirion SPS30 LCS collocated with a reference grade beta attenu-

ation monitor (BAM). The data from LCS was recorded at 15 second intervals and subsequently aggregated over 5, 10, 15, 30,

and 60 minutes intervals. To assess the impact of sampling frequency, parameters such as linearity and error were evaluated

for different sampling frequencies. In this work, the measurements and analysis were designed to address the following ques-55

tions: (1) Do the different sampling intervals have an effect on sensor performance compared to BAM? (2) How does sampling

frequency affect the identification of short-lived local pollution events?
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2 Methods

2.1 Sensirion SPS30 PM2.5 Sensor

SPS30 is a PM sensor from Sensirion and has been used in multiple low-cost monitors and well-evaluated for outdoor appli-60

cations (Tryner et al., 2020; Roberts et al., 2022). Low-cost PM sensors estimate the PM mass concentration based on light

scattering. SPS30 uses a 660 nm laser diode for light scattering (Sensirion, 2024). The sensor uses an auto-cleaning feature to

maintain the airflow rate by cleaning the airflow path. The sensor also supports sleep mode for reducing power consumption

when it is not actively sampling. The current drawn is as low as 50 µA during sleep mode (SPS). Based on the coefficient

of determination (R2), for outdoor PM2.5 measurements, SPS30 is among the best-performing LCS (AQS). In this study, five65

Sensirion SPS30 sensors were utilized and will be referred to as S1-S5 in this article.

2.2 Sensor Cluster Design

A custom monitoring device was designed and developed for this study using five SPS30 LCS (refer Figure 1). In this device,

SPS30 sensors communicate with the microcontroller (MCU) using the I2C protocol. Each SPS30 sensor has a predetermined

I2C address, 0x69 (Sensirion, 2024). Since I2C uses common lines and all five sensors have identical addresses, an I2C multi-70

plexer was used (I2C). A custom-designed printed circuit board (PCB) with inbuilt real-time clock (RTC), SD card connector,

OLED display, and power management IC was used. ESP32 MCU was used for data acquisition from the sensors. The data

was stored along with the timestamp on an SD card. A 12 second interval between sensor data acquisition was established to

synchronize with the I2C multiplexer. The data stored on the SD card can be accessed using the file transfer protocol (FTP)

over a Wi-Fi client, with a magnetic reed switch facilitating the activation of the FTP protocol during data transfer. 3D-printed75

parts were used as sensor holders and to guide the airflow along the inlet and outlet paths. Each sensor’s sampling inlet and

outlet were isolated from the others using a 3D-printed part.

2.3 Reference Monitor BAM

The BAM-1020 from Met One Instruments served as the reference monitor. Operating on the beta-ray attenuation technique,

this monitor is approved by the USEPA for regulatory purposes. The PM2.5 data collected from the BAM is available at an80

hourly resolution. Additionally, temperature and humidity data from the BAM’s ambient sensor were also recorded. Throughout

the study, the BAM’s error logs were regularly checked.

2.4 Site Description and Metereology

The experiment site was located inside the Indian Institute of Technology Delhi, New Delhi campus (28°32'37.5''N 77°11'31.1''E).

The LCS cluster and BAM were kept within 0.5 m of each other on the roof of a single-storey building. Their inlet heights were85

set at 1 m from the roof surface, facilitating unobstructed airflow throughout the experiment. The experiment was conducted

during the month of October 2023. During the experiment, ambient PM2.5 exposure ranged from 11.7 µg/m3 to 303.3 µg/m3
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Figure 1. PM monitoring device design.

with an average exposure of 84.4 µg/m3. In addition, the temperature ranged from 16.6 ◦C to 36.6 ◦C, with an average of

25.49 ◦C, and the relative humidity (RH) levels were between 27% and 93% with an average value of 65%. The recorded data

is shown in Figure 2.90

The experimental setup was strategically placed on the roof of a single-storey building (refer Figure 3) to ensure unrestricted

airflow, with no nearby obstructions. Around the study site, a campus road is about 40 m away, while taller buildings which are

4-5 storeys high, are located about 60 m away. In addition, a backup diesel generator is located about 30 m away at the ground

level.

Since October falls in the post-monsoon season in India, occasional rainy days were observed during the experiment, no-95

tably impacting temperature trends following the rainfall on 16th and 17th October, 2023. Figure 2 shows the variations in

meteorological conditions and PM2.5 levels during the study period, highlighting the dependence between the environmental

factors and air quality. It is observed that PM2.5 levels increase with rising humidity levels in the morning. As temperatures rise

in the afternoon, the humidity levels decrease, leading to a drop in PM2.5 concentrations (refer Figure 4). In the evening hours,

as humidity levels rise again, PM2.5 levels gradually increase. The peak PM2.5 levels are observed around 8:00 am and can be100

attributed to increased vehicular emissions, while lowest PM2.5 levels are observed in the afternoon due to higher temperature
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(a)

(b)

(c)

Figure 2. Time-series variation of (a) PM2.5 (BAM), (b) temperature, and (c) humidity. Lower PM2.5 levels are evident during the initial 16

days which can be attributed to higher temperatures, followed by higher PM2.5 levels coinciding with lower temperatures, likely due to rain.

The diurnal variation in humidity remained consistent, except on the 16th, 17th, and 18th of October, which saw rainfall.

and lower humidity. The diurnal variation ranged from 44.5 µg/m3 to 253 µg/m3, with an average of 107.35 µg/m3. On a large

majority of the days (83%), diurnal variation was found to be between 50 µg/m3 and 150 µg/m3.

3 Results and Discussion

Each LCS recorded data at 15 second resolution during the experiment, which was then aggregated into 5, 10, 15, 30, and105

60 minutes intervals. For each interval, samples are taken from the midpoint of the corresponding group and averaged hourly.

Additionally, hourly averages of the 15 second LCS data are also considered. This results in six hourly average datasets for

each LCS unit based on different sampling intervals. These hourly averaged LCS datasets were grouped by sampling interval

and compared to BAM measurement. The time-series plot of this data reveals significant overlap among the LCS datasets

indicating high precision. To quantify this precision, standard deviation (SD) and coefficient of variation (CV) are calculated110

in accordance with the USEPA guidelines.

The SD is computed as:

SD =

√√√√ 1
(NM − 1)

M∑

j=1

N∑

d=1

(xdj − x̄d)2 (1)
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B
A

32 m

Figure 3. Location of study. The monitoring device was installed near a BAM on the rooftop of a building (B). Near the site there is a power

backup building (A) located 32 m from B. Site A has three diesel generators.

where N is the number of 24-hour (daily) periods during which an LCS unit reported valid measurements, M is the number of

LCS units, x̄d is daily average LCS PM2.5 concentration for the dth day, and xdj is daily average PM2.5 concentration for dth115

day and jth LCS unit.

The daily average for the five LCS units was 89.56 µg/m3, with a standard deviation of 3.92 µg/m3 and a coefficient of

variation of 4.38%, indicating high precision among the five LCS. Based on this, we employ only one LCS (S1) for the rest of

the analysis, as repeating the analysis with other LCS would yield similar results.

3.1 Effect of LCS Sampling Interval on Linearity and Error120

To assess the impact of LCS sampling interval on the correlation of the LCS data with BAM, we compute the coefficient

of determination (R2), slope (m), intercept (b), root mean square error (RMSE), and normalized root mean square error

(NRMSE) (Duvall et al., 2021; Zimmerman, 2022). Scatter plots between different hourly averaged samples of S1 and ref-

erence BAM are shown in Figure 5, with error and linearity parameters indicated within each subplot. While it is commonly

assumed that higher sampling rate leads to a better correlation with the reference BAM, from Figure 5 it is seen that differ-125
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Figure 4. (a) Hourly averaged diurnal variations of PM2.5 (BAM), temperature, and humidity levels. The x-axis denotes the hour of the day.

PM2.5 levels exhibit a direct correlation with humidity and an inverse relationship with temperature. Peak PM2.5 levels are observed during

morning hours with lower levels in the afternoon. (b) Time-series variation of PM2.5 (BAM). Each day’s diurnal variation is shown shaded

in blue, with red text at the top indicating the range of diurnal variation for that day. (c) Box-plot showing the diurnal variation range for all

days of the study.
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Figure 5. Scatter plots comparing LCS S1 and BAM hourly averaged data for different LCS sampling frequencies. Each subplot includes a

regression line in red and a 1:1 ratio line in black. Additionally, linearity and error parameters are indicated within each subplot.

ent sampling intervals result in similar errors and other parameters. The reason behind similar results for different sampling

intervals is averaging of the data and gradual variation in PM2.5 levels.

3.2 Effect of LCS Sampling Interval on Hourly Average

An investigation into extreme cases is conducted using LCS data sampled at 15 second intervals. Hourly initial-final change in

PM2.5 concentrations was calculated, along with the hourly extremum difference within each hour. Hourly initial-final change130

represents the difference between the first and the last samples taken within an hour and hourly extremum is the difference

between the highest and lowest values recorded within the hour. Hourly extremum is especially helpful in detecting short lived

plume events. During our study, minimum hourly initial-final change was observed at 2023-10-08 14:00:00 (0.03 µg/m3),
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Figure 6. The clock within each subplot shows PM2.5 variation for a particular hour, indicated at the center of the clock. The minute averaged

PM2.5 data is shown around the circumference of the clock. The time series plot within each subplot shows the 15 second data for the same

hour, with different colored dots representing samples for different sampling intervals. For instance, green dots represent data over every 15

minutes, resulting in four data points per hour. The four subplots represent different one hour periods with extreme cases: (a) shows the hour

with minimum change in PM2.5 levels between the first and last sample, (b) shows the hour with highest variation in PM2.5 levels between

the first and last sample, (c) shows the hour with minimum variation in PM2.5 levels across all samples collected during that hour, and (d)

shows the hour with maximum variation in PM2.5 levels across all samples collected during that hour.
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while the maximum hourly initial-final change was observed at 2023-10-22 11:00:00 (179.035 µg/m3)(refer Figure 6(a),(b)).

Additionally, the minimum hourly extremum was recorded at 2023-10-18 12:00:00 (3.49 µg/m3), while the maximum hourly135

extremum was observed at 2023-10-06 16:00:00 (351.69 µg/m3) (refer Figure 6(c),(d)). Considering the hourly average of

these extreme events shown in Figure 6 indicates that despite these being extreme events, the hourly averages for different

sampling intervals remain consistent. This analysis shows that varying the sampling frequency does not significantly impact

the hourly average.

3.3 Plume Event Detection140

Plume events, characterized by short duration spikes in particulate matter concentration, can arise from various sources such

as vehicular traffic, cooking, waste burning, and backup power generators. These events are crucial to measure as they often

go undetected, when data is recorded at lower sampling rates, but can have significant implications. In this study, the potential

applications of high-frequency PM data are examined based on the observation that sampling frequency has minimal impact

on hourly averages. Data from LCS S1 collected at 15 second intervals, along with the corresponding hourly averages and145

the reference BAM hourly average data are analyzed to understand their differences (refer Figure 7). Numerous spikes are

observed in the 15 second data that are not seen in the hourly averages. An example of such a spike is shown in Figure 6(d)

and Figure 7 for the datetime 2023-10-6 16:00:00. These brief plume events, lasting less than 5 minutes, are not detected in

most sampling intervals and show minimal or no impact on the hourly averaged data. Such events occurred on 13 out of 30

days during our experiment. In our investigation, we identified a backup power generator located approximately 30 m from150

the experiment site as a significant source for these plume events. Emissions from diesel generators, particularly during startup

and operation, are well-documented in the literature (Zhu et al., 2009). Analysis of the generator’s operational log revealed

that its use during power outages was responsible for 61% of the observed spike events. The generator was operated for very

short periods, producing plumes upon startup. Additional plume events could potentially be attributed to cleaning activities and

other short-lived emission sources in the vicinity.155

4 Conclusion

This study, conducted over a period of one month, where LCS were collocated with a reference BAM has provided several im-

portant insights into LCS performance. The LCS and reference BAM exhibit consistent trends, along with a correlation between

humidity and PM2.5 levels. Higher PM2.5 levels were observed in the morning hours due to higher humidity and vehicular ac-

tivity, while lower PM2.5 levels were recorded in the afternoon as the temperatures rise. The SPS30 LCS units demonstrated160

high precision, with a CV of 4.38%. While previous studies have established the health risks associated with short and long-

term PM2.5 exposure, in this work we investigated the impact of sampling frequency on the ability to detect short-lived plume

events. We showed that while lower sampling frequencies are adequate for monitoring long-term trends, higher frequency data

is necessary to capture short-lived plume events. In addition, our analysis revealed that varying the sampling frequency had

minimal impact on the measurement accuracy, however only high frequency sampling (15 second sampling interval) was effec-165
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Figure 7. Time-series plot of 15 second and hourly averaged PM2.5 data from the LCS S1 and BAM. The hourly averages of BAM and S1

exhibit a consistent trend, similar to the 15 second data from S1. However, the 15 second data of S1 reveals additional spikes (indicated by

green arrows), corresponding to plume events. These transient events are not captured by the hourly averaged data from S1 or the hourly data

from BAM.

tive in capturing the transient plume events. Although short-term health assessment was not within the scope of this study, the

findings offer valuable guidance for future research, particularly in deciding the sampling frequency for different monitoring

objectives. Additionally, our study suggests that for deployments based on low-cost, standalone PM monitors which need to be

solar-powered or battery-operated, if the goal is to capture overall pollution trend rather than short-lived events, lower sampling

frequencies provide similar long-term averages as high-frequency data. This enables the PM monitors to minimize their energy170

consumption and extend their operational life thus allowing for their long-term deployment in remote or resource-constrained

areas. This work underscores the importance of customized sampling strategy while validating the use of LCS for capturing

long-term trends as well as short-term exposure events in air quality monitoring.

Code and data availability. The raw data is available at https://zenodo.org/records/14230696 (Kumar et al.). The code can be provided upon

request from the author.175
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